
SEMIX 452GB176HD

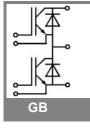
SEMiX[®] 2

Trench IGBT Modules

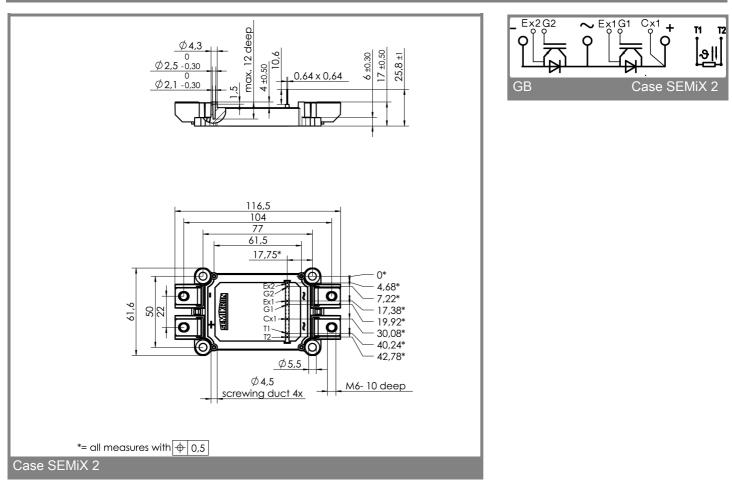
SEMiX 452GB176HD

Target [Data
----------	------

Features


- Homogeneous Si
- Trench = Trenchgate technology
- V_{CE(sat)} with positive temperature coefficient
- High short circuit capability

Typical Applications


- AC inverter drives
- UPS
- Electronic welders

Absolute Maximum Ratings T _{case} = 25°C, unless otherwise specified									
Symbol	Conditions	Values							
IGBT									
V _{CES}		1700	V						
I _C	T _c = 25 (80) °C	450 (290)	Α						
I _{CRM}	t _p = 1 ms	600	Α						
V _{GES}		± 20	V						
T _{vj} , (T _{stg})	$T_{OPERATION} \le T_{stg}$	- 40 + 150 (125)	°C						
V _{isol}	AC, 1 min.	4000	V						
Inverse diode									
I _F	T _c = 25 (80) °C	300 (200)	Α						
I _{FRM}	t _p = 1 ms	600	А						
I _{FSM}	t _p = 10 ms; sin.; T _j = 25 °C	2000	А						

Characte	ristics T _{ca}	_{se} = 25°C	e = 25°C, unless otherwise specified					
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
$V_{GE(th)}$ I _{CES}	V _{GE} = V _{CE} , I _C = 12 mA V _{GE} = 0, V _{CE} = V _{CES} , T _i = 25 (125) °C	5,2	5,8	6,4 2.4	V mA			
V _{CE(TO)}	$T_i = 25 (125) °C$		1 (0,9)	1,2 (1,1)	V			
r _{CE}	V _{GE} = 15 V, T _i = 25 (125) °C		3,3 (5,2)	4,2 (6)	mΩ			
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V,		2 (2,45)	2,45 (2,9)	V			
	T _j = 25 (125) °C, chip level							
C _{ies}	under following conditions		20		nF			
C _{oes}	V _{GE} = 0, V _{CE} = 25 V, f = 1 MHz		1,1		nF			
C _{res}			0,9		nF			
L _{CE}			18		nH			
R _{CC'+EE'}	terminal-chip, T _c = 25 (125) °C				mΩ			
t _{d(on)} /t _r	$V_{CC} = 1200 \text{ V}, \text{ I}_{Cnom} = 300 \text{ A}$				ns			
t _{d(off)} /t _f	V _{GE} = ± 15 V				ns			
E _{on} (E _{off})	$R_{Gon} = R_{Goff} = \Omega, T_j = 125 \text{ °C}$		200 (100)		mJ			
Inverse diode								
$V_F = V_{EC}$	I _{Fnom} = 300 A; V _{GE} = 0 V; T _j = 25 (125) °C, chip level		2 (2,1)	2,2 (2,3)	V			
V _(TO)	T _j = 25 (125) °C		1,1 (0,9)	1,3 (1,1)	V			
r _T	T _j = 25 (125) °C		3 (4)	3 (4)	mΩ			
I _{RRM} Q _{rr}	I _{Fnom} = 300 A; Τ _j = 25 (125) °C di/dt = A/μs				A µC			
E _{rr}	V _{GE} = 0 V				mJ			
Thermal	characteristics							
R _{th(j-c)}	per IGBT	1		0,07	K/W			
R _{th(j-c)D}	per Inverse Diode			0,17	K/W			
R _{th(j-c)FD}	per FWD				K/W			
R _{th(c-s)}	per module		0,045		K/W			
	ture sensor							
R ₂₅	T _c = 25 °C		5 ±5%		kΩ			
B _{25/85}	R ₂ =R ₁ exp[B(1/T ₂ -1/T ₁)] ; T[K];B		3420		к			
Mechanical data								
M _s /M _t	to heatsink (M5) / for terminals (M6)	3/2,5		5 /5	Nm			
w			236		g			

SEMiX 452GB176HD

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.